4/3-way fast response valve
Type 4WRGE

Nom. size 10 – max. operating pressure 315 bar
Nom. sizes 16, 25 – max. operating pressure 350 bar
Series 1X
Maximum flow 870 L/min

Overview of contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Ordering details</td>
<td>2</td>
</tr>
<tr>
<td>Preferred types</td>
<td>3</td>
</tr>
<tr>
<td>Symbols</td>
<td>3</td>
</tr>
<tr>
<td>Function, section</td>
<td>4</td>
</tr>
<tr>
<td>Technical data</td>
<td>5</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>6</td>
</tr>
<tr>
<td>Integrated control electronics</td>
<td>7</td>
</tr>
<tr>
<td>Characteristic curves</td>
<td>8 to 12</td>
</tr>
<tr>
<td>Unit dimensions</td>
<td>13 to 15</td>
</tr>
<tr>
<td>Pilot oil supply</td>
<td>16</td>
</tr>
</tbody>
</table>

Features

- Pilot operated 2-stage fast response valve with electrical closed loop position control of main spool and integrated open and closed loop control electronics
- Suitable for closed loop position, speed, pressure and force closed loop control, with simultaneous high demands on the dynamics in the small signal range and on the response sensitivity
- Pilot control valve:
 - Single-stage servo valve to the orifice/flapper principle
 - Position acquisition of main spool via an inductive position transducer
- High response sensitivity and low hysteresis
- Easily exchangeable filter element
- Integrated control electronics using SMD technology, output stage in thick layer hybrid technology, external zero point correction possible
- For subplate mounting:
 - Porting pattern to DIN 24 340 form A
 - Subplates to catalogue sheets RE 45 054 to 45 058 (separate order), see pages 13 to 15
Ordering details

<table>
<thead>
<tr>
<th>4WRGE</th>
<th>L -1X/315 G24</th>
<th>K31/</th>
<th>*</th>
</tr>
</thead>
</table>

Electrically operated 2-stage fast response directional control valve of 4-way design with servo valve pilot control and integrated control electronics.

Nominal size 10: 10
Nominal size 16: 16
Nominal size 25: 25

Symbols

<table>
<thead>
<tr>
<th>a</th>
<th>0</th>
<th>b</th>
<th>P</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

With symbol E1-, V1-:

- P → A: \(q_v \)
- B → T: \(q_v/2 \)
- P → B: \(q_v/2 \)
- A → T: \(q_v \)

Notation:

With the spools E and E1 there is an overlap of 15% in the zero position, with the spools V and V1 an overlap from 0 to 0.5%.

Further details in clear text

- M = \(^{1)}\) NBR seals
- V = FKM seals
- No code = Without sandwich plate directional valve
- WG152 = With sandwich plate directional valve
- 24 V with component plug DIN 43 650-AM2,
- Without plug-in connector
- Plug-in connector – separate order, see page 6
- A1 = Command value input \(\pm 10 \) VDC
- C1 = Command value input \(\pm 10 \) mA

Electrical connections

- K31 = With component plug to E DIN 43 563-AM6-3,
- Without plug-in connector
- Plug-in connector – separate order, see page 6

Pilot oil supply and drain

- No code = Pilot oil supply, external, Pilot oil drain, external
- E = Pilot oil supply, internal, Pilot oil drain, external
- ET = Pilot oil supply, internal, Pilot oil drain, internal
- T = Pilot oil supply, external, Pilot oil drain, internal
- G24 = Supply voltage 24VDC

Pilot pressure

- Series 10 to 19
- 10 to 315 bar

Characteristic curve form

<table>
<thead>
<tr>
<th>L</th>
<th>Linear</th>
</tr>
</thead>
</table>

- Nominal flow in L/min at 10 bar valve pressure differential
- 50 = or 100 = with nominal size 10
- 125 = or 200 = with nominal size 16
- 250 = or 350 = with nominal size 25

\(^{1)}\) Suitable for mineral oil to DIN 51 524
Preferred types

<table>
<thead>
<tr>
<th>Material no.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>00954120</td>
<td>4WRGE 10 V50L-1X/315G24ETK31/A1M</td>
</tr>
<tr>
<td>00954151</td>
<td>4WRGE 10 V50L-1X/315G24K31/A1M</td>
</tr>
<tr>
<td>00954152</td>
<td>4WRGE 10 V1-50L-1X/315G24K31/A1M</td>
</tr>
<tr>
<td>00916455</td>
<td>4WRGE 10 V1-50L-1X/315G24ETK31/A1M</td>
</tr>
<tr>
<td>00954153</td>
<td>4WRGE 10 V1-100L-1X/315G24K31/A1M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material no.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>00954159</td>
<td>4WRGE 25 V250L-1X/315G24ETK31/A1M</td>
</tr>
<tr>
<td>00954160</td>
<td>4WRGE 25 V350L-1X/315G24ETK31/A1M</td>
</tr>
<tr>
<td>00954161</td>
<td>4WRGE 25 V350L-1X/315G24K31/A1M</td>
</tr>
<tr>
<td>00954162</td>
<td>4WRGE 25 V1-350L-1X/315G24ETK31/A1M</td>
</tr>
<tr>
<td>00954163</td>
<td>4WRGE 25 V1-350L-1X/315G24K31/A1M</td>
</tr>
</tbody>
</table>

Symbols

General

Type 4WRGE…-1X/…

Type 4WRGE…-1X/…E…

Type 4WRGE…-1X/…ET…

Type 4WRGE…-1X/…T…
Function, section

The 4/3-way fast response valve is designed for subplate mounting with closed loop position control and integrated control electronics. It infinitely controls the flow proportional to the input signal from P to B and A to T or from P to A and B to T.

Design:
The valve consists of 4 main component groups:
- Low-friction pilot control valve (1) with a 2-gap torque motor; valve housing (2) with orifices (3) and filter (4)
- Housing of main stage (5) with spring centered spool (6)
- Control electronics (7) with amplifier for the control of the pilot control valve (1) and for closed loop position control of the main spool (6)
- Inductive position transducer (8) for position acquisition of the main spool

Functional description:
- Actuation of pilot control valve via a command value of 0 to ±10 V or from 0 to ±10 mA
- Comparison of the command/actual value in the control electronics → with control deviation the torque motor is operated and the flapper plate is deflected according to the control amplitude.
- Unbalancing of the pilot pressures via the variable and fixed orifices → movement of main spool (6)
- Reaching the position of the main spool according to the command value signal → control deviation is reduced to virtually 0 V → control process is completed
- Pilot oil supply to pilot control valve internally via port P or externally via port X. Pilot oil drain internally via port T or externally via Y to tank

Attention!
When the supply voltage fails but operating pressure remains available, the main spool (6) moves into an undefined position. The occurring accelerations may cause damage to the machinery.
By using a sandwich plate directional valve (see pages 12 to 14) both pilot lines in the main stage are short circuited when a power failure occurs.
With spool types E, E1 and Q2 the centering springs (9, 10) centre the main spool (6), V and V1 spools are moved into the preferred direction of P to B and A to T within a tolerance range of 1 % to 11 % of the spool stroke. When the operating pressure fails and sandwich plate directional valves are not used the same characteristics apply.
Technical data (for applications outside these parameters, please consult us!)

General

<table>
<thead>
<tr>
<th>Installation</th>
<th>NS 10</th>
<th>NS 16</th>
<th>NS 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional, preferably horizontal (commissioning guidelines see RE 07 700)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambient temperature range</th>
<th>°C</th>
<th>– 20 to + 50</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature range</td>
<td>°C</td>
<td>– 20 to + 80</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>8.0</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Hydraulic (measured at \(p = 100 \text{ bar}, \ \nu = 32 \text{ mm}^2/\text{s}, \ \vartheta = 40^\circ\text{C} \))

<table>
<thead>
<tr>
<th>Oper. pressure: Pilot control valve, pilot oil supply</th>
<th>bar</th>
<th>10 to 315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main valve, ports P, A, B</td>
<td>bar</td>
<td>up to 315</td>
</tr>
<tr>
<td>Return pressure: Port T</td>
<td>bar</td>
<td>pressure peaks < 100 permissible</td>
</tr>
<tr>
<td>Pilot oil drain, internal</td>
<td>bar</td>
<td>up to 315</td>
</tr>
<tr>
<td>Pilot oil drain, external</td>
<td>bar</td>
<td>pressure peaks < 100 permissible</td>
</tr>
</tbody>
</table>

| Nominal flow \(q_{V \text{ nom}} \pm 10 \% \) at \(\Delta \varrho = 10 \text{ bar} \) \(^1\) | L/min | 50 | 125 | 250 |

\(^1\) \(\Delta \varrho \) = valve pressure differential

<table>
<thead>
<tr>
<th>Flow of main spool (max. permissible)</th>
<th>L/min</th>
<th>170</th>
<th>460</th>
<th>870</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stroke of main spool (2-stage)</th>
<th>mm</th>
<th>± 3.5</th>
<th>± 3.5</th>
<th>± 3.5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pilot flow at ports X or Y with a jump form of input signal from 0 to 100 %</th>
<th>L/min</th>
<th>2.0</th>
<th>2.0</th>
<th>2.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pressure fluid</th>
<th>Mineral oil (HL, HLP) to DIN 51 524 further pressure fluids on request!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter rating of the pilot control valve</td>
<td>100 µm absolute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree of contamination</th>
<th>Pilot control valve</th>
<th>Main valve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max. permissible degree of contamination of the pressure fluid is to NAS 1638</td>
<td>A filter with a minimum retention rate of (\beta_x = 75) is recommended</td>
</tr>
<tr>
<td></td>
<td>class 7</td>
<td>x = 5</td>
</tr>
<tr>
<td></td>
<td>class 9</td>
<td>x = 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure fluid temperature range</th>
<th>°C</th>
<th>– 20 to 80; preferably 40 to 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity range</td>
<td>mm(^2)/s</td>
<td>20 to 380; preferably 30 to 45</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>%</td>
<td>(\leq 0.05)</td>
</tr>
<tr>
<td>Response sensitivity</td>
<td>%</td>
<td>(\leq 0.02)</td>
</tr>
<tr>
<td>Reversal span</td>
<td>%</td>
<td>(\leq 0.04)</td>
</tr>
</tbody>
</table>

Electrical

<table>
<thead>
<tr>
<th>Voltage type</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal type</td>
<td>Analogue</td>
</tr>
<tr>
<td>Zero balance</td>
<td>% (\leq 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zero deflection with alteration of:</th>
<th>Pressure fluid temperature</th>
<th>%/10 K</th>
<th>(< 0.2)</th>
<th>(< 0.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure</td>
<td>%/100 bar</td>
<td>(< 0.02)</td>
<td>(< 0.04)</td>
<td>(< 0.04)</td>
</tr>
<tr>
<td>Return pressure 0 to 10 % from (p)</td>
<td>%</td>
<td>(< 0.01)</td>
<td>(< 0.02)</td>
<td>(< 0.02)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve protection to DIN 40 050</th>
<th>IP 65</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Control electronics</th>
<th>VT 13037 (integrated in valve, see page 7)</th>
</tr>
</thead>
</table>

Note: For details regarding the environmental simulation test covering EMC (electro-magnetic compatibility), climate and mechanical loading see RE 29 070-U (declaration regarding environmental compatibility).
Electrical connections

Sandwich plate directional valve WG 152
Plug-in connector to DIN 43 650 -AF2/Pg11
Separate order under material no. 00074684
(plastic version)

Plug-in connector to E DIN 43 563-8F6-3/Pg11
Separate order under material no. 00021267
(plastic version)
For pin allocation see block circuit diagram on page 7
Integrated control electronics

Pin allocation, component plug

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Supply voltage 24 VDC (19 to 35 VDC)</td>
</tr>
<tr>
<td>B</td>
<td>GND</td>
</tr>
<tr>
<td>C</td>
<td>n.c.</td>
</tr>
<tr>
<td>D</td>
<td>Differential amplifier input com. value (± 10 V or ± 10 mA)</td>
</tr>
<tr>
<td>E</td>
<td>Measurement output ref. potential</td>
</tr>
<tr>
<td>F</td>
<td>Earth connected to valve housing</td>
</tr>
</tbody>
</table>

Command value:
- Reference potential at E and positive command value at D causes flow from P to A and B to T.
- Reference potential at E and negative command value at D causes flow from P to B and A to T.

Connection cable:
- Recommended: up to 25 m cable length type LiYCY 5 x 0.75 mm²
- up to 50 m cable length type LiYCY 5 x 1.0 mm²
- External diameter 6.5 to 11 mm
- Connect screen to PE on supply side only.

Note:
- Electrical signals (e.g. actual value) which are transmitted by the valve electronics must not be used to switch off safety related machinery functions! (Please note the „Safety requirements for fluid power operated machinery and parts – hydraulics“ according to European standard EN 982!)

Block circuit diagram / Terminal allocation of the integrated control electronics type VT13037

Interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>Integrated control electronics</th>
<th>Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Dither generator</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Amplitude</td>
<td></td>
</tr>
<tr>
<td>U(I)</td>
<td>Current controller</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Output stage</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Oscillator</td>
<td></td>
</tr>
<tr>
<td>U(I)</td>
<td>Demodulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zero point</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Zero point</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sensitivity</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Flow direction:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive signal at Pin D and ref. potential at Pin E causes flow from P → A.</td>
<td></td>
</tr>
</tbody>
</table>

Supply voltage
- 15 V
- 24 V

Act. value ± 10 V/± 10 mA
- Measurement output F has positive potential against ⊥ with flow P → A.

Connection:
- Supply voltage + 24 VDC ± 25 %; full bridge rectification with smoothing capacitor 2200 µF; \(I_{\text{max}} = 230 \) mA

Note: Electrical signals (e.g. actual value) which are transmitted by the valve electronics must not be used to switch off safety related machinery functions! (Please note the „Safety requirements for fluid power operated machinery and parts – hydraulics“ according to European standard EN 982!)
Characteristic curves (measured at $v = 32 \text{ mm}^2/\text{s}$ and $\vartheta = 40 ^\circ \text{C}$)

All nominal sizes

Pressure-signal-characteristic curve (V spool)

Leakage flow 4WRGE…V with pilot control valve in centre position of main spool

Characteristic curve measured with a pilot control pressure $p_s = 210 \text{ bar}$

Leakage flow in L/min

Operating pressure in bar

1 = Nominal size 10 (100 L/min)
2 = Nominal size 16 (200 L/min)
3 = Nominal size 25 (350 L/min)
Characteristic curves (measured at $\Delta p = 10$ bar or 5 bar per control land)

Spool symbols E. and V.

Spool with characteristic curve L

Spool with characteristic curve P

1 = Larger nominal flow
2 = Smaller nominal flow

Spool symbol Q2-

A \rightarrow T
B \rightarrow T
P \rightarrow A
P \rightarrow B

Command value in % \rightarrow
Characteristic curves (measured at $v = 32 \text{ mm}^2/\text{s}$ and $\vartheta = 40 \, ^\circ\text{C}$)

Transient function with a jump form of electrical input signal

Characteristic curve measured with a pilot control pressure $p_i = 210 \, \text{bar}$

Frequency response characteristic curves

Characteristic curve measured with a pilot control pressure $p_i = 210 \, \text{bar}$

Flow/load function at max. valve opening (tolerance ± 10 %)

1 = Recommended flow limitation
Characteristic curves (measured at $v = 32 \text{ mm}^2/\text{s}$ and $\vartheta = 40 ^\circ \text{C}$)

Transient function with a jump form of input signal

![Characteristic curve measured with a pilot control pressure $p_s = 210 \text{ bar}$]

Frequency response characteristic curves

![Characteristic curve measured with a pilot control pressure $p_s = 210 \text{ bar}$]

Flow/load function at max. valve opening (tolerance $\pm 10 \%$)

![Flow limitation graph]
Characteristic curves (measured at $v = 32 \text{ mm}^2/\text{s}$ and $\vartheta = 40 \text{ °C}$)

Transient function with a jump form of electrical input signal

Characteristic curve measured with a pilot control pressure $p_s = 210 \text{ bar}$

Frequency response characteristic curves

Characteristic curve measured with a pilot control pressure $p_s = 210 \text{ bar}$

Flow/load function at max. valve opening (tolerance ± 10 %)

$1 = \text{Recommended flow limitation}$
1 Pilot control valve
2 Sandwich plate directional control valve (only included with ordering detail "…WG152")
3 Plug-in connector to DIN 43 650-AF2/Pg11 (separate order, see page 6)
4 Plug-in connector to E DIN 43 563-BF6-3/Pg11 (separate order, see page 6)
5 Main valve
6 Control electronics and inductive position transducer
7 Name plate
8 R-ring 13 x 1.6 x 2 (ports A, B, P, T)
9 R-ring 11.18 x 1.6 x 1.78 (ports X, Y)
10 Connection cable
11 Space required for connection cable and removal of plug-in connector
12 Space required to remove plug-in connector
13 Valve mounting surface, porting pattern to DIN 24 340 form A (ports X, Y on request)

Subplates to catalogue sheet RE 45 054 and valve fixing screws must be ordered separately.

Subplates:
- G 534/01 (G 3/4)
- G 535/01 (G 3/4) with ports X and Y
- G 536/01 (G 1) with ports X and Y

Valve fixing screws:
- 4 off M6 x 45 DIN 912-10.9; $M_A = 15.5$ Nm

For section details see page 16.
1 Pilot control valve
2 Sandwich plate directional control valve
(only included with ordering detail "...WG152")
3 Plug-in connector to DIN 43 650-AF2/Pg11
(separate order, see page 6)
4 Plug-in connector to E DIN 43 563-BF6-3/Pg11
(separate order, see page 6)
5 Main valve
6 Control electronics and inductive position transducer
7 Name plate
8 R-ring 22.53 x 2.3 x 2.62 (ports A, B, P, T)
9 R-ring 10 x 2 x 2 (ports X, Y)
10 Connection cable
11 Space required for connection cable and removal of plug-in connector
12 Space required to remove plug-in connector
13 Valve mounting surface, porting pattern to DIN 24 340 form A
(port X, Y on request)
14 Locating pin (2 off)

Subplates to catalogue sheet RE 45 054 and valve fixing screws must be ordered separately.

Subplates:
- G 172/01 (G 3/4)
- G 172/02 (M27 x 2)
- G 174/01 (G 1)
- G 174/02 (M33 x 2)

Valve fixing screws:
- 2 off M6 x 60 DIN 912-10.9; $M_A = 15.5$ Nm
- 4 off M10 x 60 DIN 912-10.9; $M_A = 75$ Nm

For section details see page 16.
Unit dimensions: NS 25

1 Pilot control valve
2 Sandwich plate directional control valve
 (only included with ordering detail “…WG152”)
3 Plug-in connector DIN 43 650-AF2/Pg11
 (separate order, see page 6)
4 Plug-in connector to E DIN 43 563-BF6-3/Pg11
 (separate order, see page 6)
5 Main valve
6 Control electronics and inductive position transducer
7 Name plate
8 R-ring 27.8 x 2.6 x 3 (ports A, B, P, T)
9 R-ring 19 x 3 x 3 (ports X, Y)
10 Connection cable
11 Space required for connection cable and removal of plug-in connector
12 Space required to remove plug-in connector
13 Valve mounting surface, porting pattern to DIN 24 340 form A
 (ports X, Y on request)
14 Locating pin (2 off)

Subplates to catalogue sheet RE 45 054 and valve fixing screws must be ordered separately.

Subplates:
- G 151/01 (G 1)
- G 154/01 (G 1 1/4)
- G 156/01 (G 1 1/2)

Valve fixing screws:
6 off M12 x 60 DIN 912-10.9; \(M_A = 130 \) Nm

For section details see page 16.
Pilot oil supply

Type 4WRGE…-1X/…

Pilot oil supply, external
Pilot oil drain, external

With this version the pilot oil supply is from a separate pilot pressure circuit (external).
The pilot oil drain is not into the T port of the main valve but separately into the tank via port Y (external).

Type 4WRGE…-1X/…E...

Pilot oil supply, internal
Pilot oil drain, external

With this version the pilot oil supply is from the P port of the main valve (internal).
The pilot oil drain is not into the T port of the main valve but separately into the tank via port Y (external).
Port X must be plugged in the subplate.

Type 4WRGE…-1X/…ET...

Pilot oil supply, internal
Pilot oil drain, internal

With this version the pilot oil supply is from the P port of the main valve (internal).
The pilot oil drain is directly into the T port of the main valve (internal).
Ports X and Y must be plugged in the subplate.

Type 4WRGE…-1X/…T...

Pilot oil supply, external
Pilot oil drain, internal

With this version the pilot oil supply is from a separate pilot pressure circuit (external).
The pilot oil drain is directly into the T port of the main valve (internal).
Port Y must be plugged in the subplate.

Positions 1 and 2: Plug M6 DIN 906-8.8 A/F 3

Bosch Rexroth AG
Industrial Hydraulics
D-97813 Lohr am Main
Zum Eisengießer 1 • D-97816 Lohr am Main
Telefon 0 93 52 / 18-0
Telefax 0 93 52 / 18-23 58 • Telex 6 89 418-0
eMail documentation@boschrexroth.de
Internet www.boschrexroth.de

Bosch Rexroth Limited
Cromwell Road, St Neots,
Cambs, PE19 2ES
Tel: 0 14 80/22 32 56
Fax: 0 14 80/21 90 52
E-mail: info@boschrexroth.co.uk

The data specified above only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The details stated do not release you from the responsibility for carrying out your own assessment and verification. It must be remembered that our products are subject to a natural process of wear and ageing.